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MESH-CONNECTED PROCESSOR ARRAYS
FOR THE TRANSITIVE CLOSURE PROBLEM"*

Sailesh K. Rao, Todd Citron and Thomas Kailath

Information Systems Laboratory
Stanford University
Stanford, CA 94305.

Abstract

The main purpose in this paper is to lay a theoretical foun-
dation for the design of mesh-connected processor arra‘y:‘s
for the transitive closure problem. Using a simple path-
algebraic formulation of the problem and observing its simi-
larity to certain well-known smoothing problems that occur
in cfi'gital signal processini, we show how to draw upon
existing techniques from the signal processing literature to
derive regular iterative algorithms for determining the tran-
sitive closure of the graph. The regular iterative algorithms
that are derived using these considerations, are then
analyzed and synthesized on mesh-connected processor
arrays. Among the vast number of mesh-connected proces-
sor arrays that can be designed using this unificd approach,
the systolic arrays reported in the literature for this problem
are shown to be special cases.

I.Introduction

An interesting problem that often arises in various
raph theorctic applications is the transitive closure prob-
em. Here the objective is to determine whether or not there
exists a path between any pair of nodes in a directed graph.

This problem has been addressed in the context of neural
modecling, routing, decision making, circuit simulation, tran-
sportation problems efc. and a solution to this problem can
be easily adapted to determine the shortest(longest) path
between two nodes in a weighted dirccted graph, the
number of paths between these two nodes (if the graph is
acyclic), for enumerating the paths themselves, for dcter-
mining the set of strongly connected components in the
graph, for determining the minimum spanning trces of the
graph, for determining the bridges in a graph and so on [5].

In the usual formulation of the problem, the graph is
given in terms of its adjacency matrix A, where a, =1 if
there is a directed arc in the graph from node i to node j,
and 0 otherwise. Then, the transitive closure of the graph is
requcsted in the form of the matrix T where t, = 1 if there
is a directed path in the graph from node i to node j, and 0
otherwise.

Systolic Architectures for solvin% this problem on a
mesh connected array of processors have been derived in
Guibas, Kung and Thompson [1] and recently in Kung and
Lo[2]. However, using the recently developed methodology
in [3,4], we can show that there are a vast number of sys-
tolic configuration® for solving the problem. Indced, any
systolic array solution for the matrix multiplication problem
can be simply adapted to solve the transitive closurc
problem; it has been shown in [4] that there are 27 diffcrent
array configurations with strictly nearest neighbour intcr-
connections for matrix multiplication. Thus, there are that
many array configurations for solving the transitive closure
problem as well. The methodology described in [3,4,17] for
deducing these array configurations consists of the follow-
ing steps:
i.  Dctermine a well-structurcd iterative algorithm (what is
known as a regular iterative algorithm in (3.4,17)) for
solving the problem,
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ii. Analyze the algorithm and obtain various
implementation-independent properties of the algo-
rithm, including a valid computational schedule, and

ili. Map the algorithm onto a mesh-connected processor
array for which the computed schedule can be applied.

In this paper, we shall mainly concentrate upon the first of
these steps. The other two steps are just applications of the
techniques developed in [3,4,17] amf we shall only briefly
discuss them.

Organization of the Paper: The first step above is addressed
in Scction II. Here we shall show how to derive regular
iterative algorithms for solving the transitive closure prob-
lem. In particular, we shall obtain a mathematical formula-
tion of the problem so as to expose its relation to a certain
well known problem in signal processing. Thereupon, we
show how to use some established techniques in that field
for obtaining regular iterative algorithms for solving the

roblem. The resuiting algorithms comprise those given in
Fl] and [2] as special cases. Once a Regular Iterative Algo-
rithm is found, one can apply the techniques outlined in
[3,4,17] to dcterminc implementations for it. Some exam-
ples are given at the end of this section, though the actual
details can be found in [19].

In the intcrest of brevity, all the theorems and procedures
given in this paper are stated without proof. The interested
reader is referred to a longer version of this paper([19}, for
the nitty-gritty dctails.

II. Regular Iterative Algorithms for the Transitive Clo-
surc Problem

The design of regular iterative algorithms for the tran-
sitive closurc problem is discussed in this section. An itera-
tive algorithm is said to be regular if it can be expressed as
a set of functional relations as follows: For j = 1 to v do:

o= f1,cI=D. ), x(I=D:2), - - - x(I-Dy), -+ )

where Vv is some constant integer that detcrmines the
number of indexed variables used in the algorithm and 7 is
an s-dimcnsional integer vector that ranges over a
prespecified set of points known as the index points. The
index points span a certain S-dimensional region known as
the Index Space. In addition, for a regular itcrative algo-
rithm, the vectors D, ; are required to be independent of the
mdc;l( point / and l?c ‘cxhtcm' of the Index Space. More on
regular aterative algorithms and their properti

found in {3,17,18}. propertics can be

In the usual path-algebraic formulation of the transitive
closure problem, one dceterminces the transitive closure of
the graph by solving a sct of lincar equationsf6-8] over a
semi-ring. Using this formulation, many known algorithms
for solving lincar cquations, such as Gaussian climination,
Gauss-Sicdel iteration or Gauss-Jordan elimination can be
simply modificd to solve the transiive closure problem.
Fhe resulting algorithms for the transitive closure problem
are better known 1n the graph-theoretic literature as Carre's
algarithm{7], Ford-Fulkerson’s algorithm[9] and Warshall’s
algorithm([10] (or Floyd's algorithm [[11]) respectively.,

Furthermore, these algorithms can be written in a regular
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. Even thouch there is such a striking relationship
between the algorithms given in [6-10] and certain well-

’

known precedures for solving linear equations, there does
not scem to be an obvious correspondence between the
N transitive closurc algorithm of Guibas, Kung and Thomp-
o son{1] and any known lincar algebraic proccdure. In this
° section, we shall show how one can obtain an alternative

I I

Warshall's algorithm can
these algorithms.

matrix of the graph, T, is expressed as
kmy

t, = a,V LR
]

path from i to k and &« to ; for some k.

tion 1s to show that this is indeed so.

iterative format, and thus, using the techniques given in
-~ [3.4]. one can casily generate a multitude of mesh connected
processor implementations for the transitive closure prob-

formulation of the transitive closure problem that bears a
marked resemblance with certain well known problems in
digital signal processing. Thercupon, using certain known
signal processing techniques, we shall derive several regular
itcrative algorithms for solving the transitive closure prob-
lem. These algorithms have no direct counterparts in lincar
algebra, but have close relationships with known algorithms
in recursive filtering. Furthermore, Guibas et. al.’s algo-
rithm is a special case of the algorithms that are derived in
this scction using this approach. Curiosly enough, even

gc derived as a special case of

Not only can the transitive closure problem be formu-
fated as a set of lincar equations, it can also be determined
by solving a set of Lyapunov equations, or by solving a set
of matrix quadratic equations. For thc purposc of this
paper, the formulation of the problem as a sct of quadratic
equations is of intcrest, since this formulation exposes the
similarity of the transitive closure problem with certain
image smoothing problems. In this formulation, the element
in the " row and the ;» column of the transitive closure

where *.' represents the logical OR operation and ‘v’
represents the logical AND operation. The above expression
is merely an algebraic statement of the obvious fact that a
path from node : to node ; exists if and only if there exists
cither an cdge from i to ; (i.e. », = 1) or if there exists a

The recursive computation of a matrix as suggested by
eqn.{1) is similar to certain computations that arisc in the
recursive smoothing of digital signals [12]. Thus, it is only
natural to ask whether the techmigues used in signal pro-
cessing for solving such problems can be adapted for the
transitive closure problem. The main objective in this sec-

i

—

Lig.l. The cyclic nature of the definition in cqn. (1). The
darkencd Lines indicate the entrics of T that have to be com+
puted betore the tvpical element marked « can be comput-
ed. In the imare processing hiterature [13-14], this would be
[rcfcrrcd to as the outpus mask of the recursive filter.

A close examination of the system of equations defined
by cqn. (1) rcveals that it is impossible to solve the transi-

tive closurc problem by compuung the entries of the T
matrix using cqn. (1), no matter how we order the compu-
tation. This is bhccause of the cyclic defimtion of the cle-
ments of the matrix in that, e.g., t. is dependent upon say,
t,, but ¢, is dependent upon t, for any &k # ; (See Fig.1).
This ‘nonrccursible’ situation often arises typically in the
recursive smoothing of (noisy) digital signals whercin it is
usually handled using one of two main approaches:

i.  Extended Filtering: For the transitive closure problem,
this technique would correspond to solving a simpler
‘recursible’ problem for an extended graph.

ii. Forwards-Backwards Filtering: In this approach, one
would attempt to recast eqn.(1) in a recursiblec form
such that the problem can be solved by (possibly
repeated) ‘forward’ and ‘backward’ passes through the
adjacency motrix.

We shall mainly elaborate upon the first approach in
the rest of this section. Thus, we shall show that by solving
a recursible problem for a suitably extended graph, we can
obtain the transitive closure of the given graph. In addition,
we shall also characterize a family of extended graphs for
which this property holds. For a graph with £ directed arcs,
this family has more than 2 members. For this family of
extcnstons, we shall present an algorithm that can be
applied on any member, to obtain the transitive closure of
the given graph. We shall show that this algorithm, when
applicd to onc particular member of this family, can be
rclated to the algorithm due to Guibas, Kung and Thomp-
son [1]. We shall also show that the algorithm when spe-
cialized to yvet another member of this family, after suitable
‘folding’ of the computation, is exactly the algorithm due to
Warsha]l}lo] which was recently implemented on a systolic
array in [2]. It is interesting to note that algorithm in [10],
though it can be derived as a special case of the extended
graph approach, rcally solves the problem by performing
Tecursive computations using forward and backward passes
through the adjacency matrix.

Before, we procced to postulate the extended graph
problem per se. we nced to define the concept of a i—park
(sec e.g Ullman{3}).

Definition: t-path: A path from node i to node j (or node j
to node i) is said to be a s-path if every node n, that lies
along this path, excluding tgc end points, has index less
than ¢, i.c., it satisfics n < ¢. ‘
i
For the present, we shall be interested in the case
t = min(1y). This is because a min(iy)-path has the important
property that it is either a direct cdge or is composed of a
min(1.k)-path and a min(kj)-path for some & < min(i).
Indeed, choose & to be the maximum nodc index along the
min(i.y)-path and consider the sub-path from ¢ to k. B
choice. & is lurger than any node index in this sub-pat
(excluding 1) and conscquently this is a mn(i k)-path from

to k. Likewise, the & to ; path is also a mun(k,))-path, thercby .
verifving our statement. Clearly, the converse statement is
also true. That is, if there is @ mintak)-path from i to k and a -

munik.3-path from & to ; for some & < min(1y), or if there is a
dirccted arc from 4 to o, then there is a min(,))-path from i
to ;. Writing this up algcbraically, we have

mrl -
¢, = .1,4[ o c[c{,} 2

which 1s mercly a mathematical formulation of our earlier
statement. The above equation clearly shows that the cle-
ment ¢, of the matrix C is dependent only upon clements
that arc 1n the same column above 1t and in the same row to
the left of it. (Note its simianty with the so-called
‘cxl‘mncr-pl.mc‘ two-dimensional  recursive filter [13-14].)
Thus, the computation of these elements can be performed
iteratively starting from the top left hand corner of the
matnx € and proceeding downwards and outwards.

The existence and uniqueness of the solution to the set
of equations :n (2) can be eastly established as shown in

.
.
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(19]." The problem of detecrmining the existence of a
min(i.g)-path from node i to node j for every (i, ) is, there-
fore, quitc casy to solve. Morcover, as shown below, this
problem can be solved by means of a regular iterative algo-
rithm; thus the tcchniques developed in [3,4] for analyzing
these algorithms and for implementing them on mesh con-
nected processor arrays can be applied. Later in this section,
we shall show how to extend the given graph using addi-
tiona! ¥ nodes (and some arcs) in such a manner that by
using the information about the existence of min(i,j)-paths in
this 2v-nodc extended graph, one can infer the transitive
closure of the original grapg.

a. Determining the Min(ij)-paths of a Directed Graph
The system of equations for determining the min(i j)-paths
of a directed graph, given in (2) above, resembles in a
modificd, simplificd form, the set of rclations that is usually
associated with ‘quarter-plane’ recursive filtering in the sig-
nal processing litcrature F13~14]. Since this filtering problem
can be solved by means of a regular iterative algorithm [4],
it should be possible to determine the min(i.j)-paths of the
graph using an algorithm of the same form. Such an algo-
rithm is given below:

Algorithm 1: for determining the min(i.j)-paths of a
directed graph: Fori,jk = 1 1o ¥ do:

o a(ij,k)if j£k
ai,j+1k) = c(ij.k) 7 a(ij,k) b(ij.kyif j=k

b(ij k) if itk

bUFLTK) = ;i k) ali,j k) blijk)if i=k

c(igk+1) = c(ij.k) 7 [a(ij.k) bij.k)} )

with the initialization

a(i,1.k)
b(14.k)
c(ij,1) = ay 4)

for all ijk=11wN.

min(i.)-path from node i to node j and is cqual to zero oth-
erwise.

Some Variations: It is possible to rclate the above algorithm
to the ‘first pass’ of the systolic algorithm in [1]. However,
in [1], the adjacency matrix of the graph is input twice to
the array, once from the left end of the array and once from
the top of the array. In the above algorithm, the adjacency
matnx s input only once, i.e., by initializing c(:,;.1). This
would ndicate that there may be other possible initializa-
tions for the alporithm that achicve the same objective. For
cxample, the initialization of the systohc array in [1]
corresponds to the following:

ali.lk) = a,
bl k) = =,
g3y = 0 5

'whcrc 1tis assumed that a = . We can <how that for this
imitizlization, or if in ¢gn.(5) ciep D) s also made cqual to
» . the alponthm can be used to obtain more information
than sust the muatiy)-paths in the rraph. In the following
theorem, a weaker version of which appears 10 2], the
nature of the paths detected by the algorithm for this initial-
1zation s desenbed. ’ )

Theorem 1: If Alporithm 1 s executed with the imitidhiza-
tion ot cqn. (5), then ety N« 1) will be 11f cither

1) there 18 a runtey)-path from node s to node §, or

ol v

Then c(ijVN+1) = 1 if there is a-

i) if therc is a path of length 2 from node i to node j, or

i) for i > j, if there is a decreasing index path from i to
some k, where i > k > j, and a mun(ky)-path from & to j,
or

iv) for j>i, if there is a min(i.k)-path from i to some &k,
where j > & > i, and an increasing index path from « to
-

If none of these paths exist from node i to node j, then

c(ij,~+1) will be zcro.

' In contrast to the initialization used in Algorithm 1, the

above initialization allows us to obtain morc information

than just the min(i,j)-paths in the graph. Neverthcless, this
extra information is never used in the algorithms described
in the rest of this section. Thus, if one is interested only in
the min(i.j)-paths, 1n both Algorithm 1 and in the above vari-
ation, one could consider c(i,,min(i j)+1) as the outputs of

—
[
\

node-Index

v

Fig..Z.: The types of paths detected by Algorithm 1 with
he initializotion of egqn. (5): The nodes are assurmed to be
arranged 1n descending order from top to bottom (i.e. ¥ ap-
cars at the tep and 1 at the bottom). The paths shown are;
from left to right: 1) miali,)-path, i) path of length 2, iii) a
ath compriscd of a decreasing index tail and a min(i ;)-path,

ind v} a path comprised of a mia(:.j)-path followed by an in-
frcasmg index tail.

the algorithm. Furthermore, for determining min(ij)-paths
in the graph, one can devise a whole variety of possible ini-
tializations of Algorithm 1. To be spccific,

’l;lhcorcm 2: If the inputs to Algorithm 1 are chosen such
that

a(il.j)-e(ij,1) = &, fori>j
b(1.).0).c(ijl) = a, forj>i
c(l,l,])-[a(n’,l,i?‘b(l.i,l)] =1 (6)

then eyt ;)= 1) will be 1if there is a min(i.y)-path from
node « to node ; and will be zero otherwise.

Theorem 2 opens up several interesting possibilities.

Thus, for example, 10 the svstohie array of Guibas, Kung
and Fhompsonjt), one does not necessarily have to input
the adnaceney matnix twice, as described by the authors.
Instead, aoian as an example, the lower triangular portion
of the wdiiceney matrix can be input from the top of the
arrav and the upper triangular portion from the left of the
arrav. Lhose and other vanations are discussed in detail in
Section IV of tas paper.

b. The Extended Graph Approach to the Transitive Clo-
surc Problem

Knowing how to determine the min(i.))-paths in a graph
using a regular ateranve algonthm, we can now solve zﬁc
transitive closure problem wself. To do so, we shall attempt




to cxtend the graph in such a manner that, solving the
rminfiy)-path problem for this extended graph is equivalent
to solving the transitive closure problem for the original
graph. Even though this idca of cxtending the domain of
the problem is borrowed from the signal processing litcra-
ture, the basis for this approach can be independently
derived using the following simple observation:

Given a dirccted graph with v nodes, suppose that we
introduce additional ¥ nodes numbered from (V+1) through
27 such that node (¥+i) has one incoming arc from node i
and onc outgoing arc to node i and no other arcs incident
upon it. For this modificd graph, we claim that if there is a
min(N =i N+)-path from node (N+) to node (¥+j), then and
only then is tgcrc a path in the original graph from node ¢
to node ;. This sfatement is easily verified since all paths
between these two nodes have to pass through node i and |
node ;, and since every path in the original graph between
node i and nodec ; has to be part of a mun(¥+:V+;)-path
between node (V+:) and node (Vv +;).

The 2v-node extended graph described above has an
adjacency matrix A, given by '

-l 0

where I is the (Vx~) identity matrix.

This is a rather simple extension of the original graph
and was derived using heuristic arguments. Instead, one can
pose the the cxtension problem formally as follows:

The Extension Problem: Given an N-node directed graph
with adjacency matrix A, determine an extension of this
graph with adjacency matrix

il :;l ®

with appropriate (¥xX) matrices A ., A.. and A.. such that
for i; < &, there is @ min(VN+i.¥+;)-path from node (V+i) to
node (v+) in the extended graph if and only if there is a
dirccted path from node ¢ to node ; in the original graph.

Characteri.ation of Useful Solutions to the Extension
Problem:

An uscful solution to the extcnsion problem is one that
can be ‘cas:ly’ inferred from the original graph. Here, we
shall assume that the exteosion can be easilv inferred if it
can be deduced from the adjacency matnix of the graph or
from the mun(i.;)-paths in the graph. Such a family of solu-
tions to the extension problem can be characterized as fol-
lows:

Theorem 3: A graph with adjacency matrix given as in cqn.
(17) 1s a solution to the extension problem if

Al - A,
A1 - A
Al - A )
and
AT -A T-A._T-=T (10)

where the oR of two matrices indicates the term by term
lomical ¢ 2 of therr entries. Further, i this extended graph,
the custence ot a path from node Vo to node (Vo)
mmpiies the cxistence of g m(y -0 N -;-path from node
(V-1 to nede (N e

) The extended araph can be chosen in several wavs. For
instance, the cholce A - AL - AL - I that we discussed car-
lier, satisfies the conditions in I'hcorem 3. Likewise, the

choice A. = A.=A..=A is also valid. Alternatcly, we
could first determine the min(i,)-paths in the original graph
and usc this information for initializing the extended graph.
Notc that once the extended graph is chosen, Algorithm 1
or any of its variations can be applied on the extended
graph so as to obtain the transitive closure of the original
graph, cven though some of the variations described earlier
dct_crminc more than just the rua(ij)-paths in the graph.
This is because of the fact (stated in Theorem 3) that for
every path in the extended graph from node (v-:) to node
(V+;), there cxists a corresponding mun-path. Furthermore,
since we are only interested in the min(N~i.¥~,)-paths, the
transitive closurc information is also obtained as
C(N+iN+jN+min(iy)+1) = t,.

The above statements were made without taking into
considcration the structure of the extended graph. Using the
structure in the graph, one would hope that determining the
existence of mun(N~i¥N=;)-paths from node (V+i) to node
(N+) is ‘casicr’ in some sense. [ndeed this is true due to the
following result:

Theorem 4: If Algorithm 1 is exccuted on any member of
tgc family of cxtended graphs characterized in Theorem 3,
then

a) For ij =N, if i -j, and if there exists a max(i.j)-path
from node i to node ; in the ornginal graph, then
ciN+ju+1) =1,

b) For ij =N, if j >, and if there exists a max(i.j)-path
from node : to node ; in the original graph, then
c(N+i1yg+1)y = 1.

c) Finally, c(N+iN+;N+1) =t ,foralli,js N

With this theorctical background established, we can state
the basic algorithm for dctermining the transitive closure of
the given graph using the extended graph approach. Later,
we shall particularize the algorithm to certain special cases
(and deduce some variations) so as to obtain, ¢.g., the algo-
rithms reported in {1.2].

Algorithm 2:(for dectcrmining the transitive closure of 8
dirccted graph):

i.  Choose an extension of the graph using Theorems 3,4.

ii. Exccute Algorithm 1 for the extended graph with adja-
cency matrix A and over the index space iy =1 to 2V
and &k = 1 to mun(ij,N).

iii. Determine the transitive closure, {t.}, of the original
graph as { c(v+i N+ N+ D)} forall iy s N.

c. Some Variations of Algorithm 2 and Some Special
Graph Extcnsions

Given the basic algorithm for solving the transitive clo-
sure problem, iz, Algorithm 2, one can easily come up with
variations based on some simplc obscrvations. In this
manncr, we shall presently show how to deduce the algo-
rithms piven in {1} and {2] as special cases of the extended
graph approach.

Supposc that Alzorithm 2 is exccuted and the values of
c(ig.runteg Ny« 1) are collected in matrix form in the obvious
order, for oy = 1 to 2. Call the resulung (2Vv~2V) matrix ¢,
and partition 1t into ¥ % &) blocks as

. [C_ L C

¢ C. )

Then, from Thecorem 4, 1t is known that
C.. =T (12)

and
C.xC. = T (13)




’

where the symbol *x
two matrices. (The logical product is the same as the usual
matrix product except that scalar addition is replaced by the
logical OR operatuon and scalar multiplication by the logical
AAD operation.) Furthermore, we know that

signifies the logical product of the

C.oT=C T=T (14)

and from the definition of the transitive closure matrix,
TxT = T (15)

Therefore, one can show that

{C;-C;.}x{c_ﬂc:_} -7 (16)

Now, in Algorithm 2, if it is applicd to the extended graph
without modification, one evaluates C . and C.. separately
and then finds the logical product of the two to determine
the transitive closure of the original graph. However,
eqn.(16) implies that we do not need to determine these
matrices separately. The logical OR of these matrices is suf-
ficient for our purpose. This observation is, in spirit, the
basis of the systolic transitive closure algorithm of Guibas,
Kung and Thompson[1], though these authors do not derive
their algorithm using such considcrations.

Certain choices of the extended graph are ‘natural’ and
need to be cxamined in some detail. Thus, the choice
A-=A. = A.. =1, discussed previously, is a simple and
straight-forward solution to the extension problem. For
such a choice, the matrix €, defined above, is such that C .
is lower triangular with ones on the diagonal, and C.. is
upper triangular with oncs on the diagonal. This fact can
be casily verified using the obscrvation that c(N+ij j+1)is 1
if there is a muniV - j)-path from node (¥ +i) to node j in the
extended graph and is 0 otherwise. Now, for the above
choice of the extended graph, any path from node (¥+i) to
node ; has to pass through node i and therefore, if i > j, all
these paths are not min(¥+ij)-paths. Hence c(N+ijj+1) =0
for + > j, which substantiates our statement that C.. is upper
triangular. Similarly, one can conclude that C . is lower tri-
angular.

For this particular choice of the extended graph, the
matrix C . is lower triangular while the matrix C.. is upper
triangular. Howcver, for any arbitrary choice of the exten-
sion, these matrices need not be triangular. Nevertheless,
we can show that the relevant triangular portions of the
resulting matrices are of interest because of the following
thcorem.

Theorem 5: For any choice of the extended graph satisfying
Theorem 3, let
C.=L.-1-U.

C. = L..1.U.. (17)

where the 1I's arc lower triangular and U's are upper tri-
angular matrices. Define

U-u -1 (18)

“brhcn. the transitive closure of the onginal graph, T is given
y

T - U~L (19)

Notice how rthe structure of the extended graph has
been used to reduce the computational effort invoived in
Algonithm 2. [hus. 1n Theorem 4, we showed that instead
of considering cligmintig)+ 1) for the transiive closure of
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the graph, onc can instead use c(ij,min(ij,N)+1). This
rcduces the total amount of computation by approximately
N’13 logical ayp and logical OR operations. Next, in
Theorem 5, we showed that we do not nced to compute the
matrices C . and C. entirely. Only the lower triangular por-
tion of C_. and the upper triangular portion of C.. are of
relevance. This further reduces the total computational
cffort by about ~°3 logical operations. Thus, using these
thecorems, we have reduced the computational effort from
8N%3 opcrations to 2V’ operations. Nevertheless, for a
sequential implementation, this is still about a factor of 2
greater than the computational effort required for
Warshall's algorithm[10]. However, Warshall's algorithm
can be derived using the extended graph approach by con-
sidering the graph cxtension for which A. = A.. = A.. = A.
An examination of the operation of Algorithm 2 for this
extcnsion of the graph reveals that some of the intermediate
variables computed Ey the algorithm are identical and there-
fore the computation of these variables need not be
repeated. In the zigorithm, «(N+: ¥+;N¥+1) is obtained by
computing itcratively fork = 1to ~,

c(N+i N+ k+1) = c(N+iN+jk)/
[@(N+i N+ k) b(N+iN+j k)] (20

Now, the variables a(N+iN+;.k) and b(N~iN+jk) in eqn.
(20) are really dummy variables that represent c(N+ik,k+1)
and c(k.N+j.k+1) respectively. However, for the special
choice of the extended graph under consideration, we can
show after some algebraic  manipulations, that
cN+ikk+1) = c(N+iN+kk) and c(k N+ k+1) = c(N+kN+j k)
and therefore,

CN+iN+jk+1) = c(N+iN+j k) 5
[c(N+iN+k k) c(N+k N+ k)] (€2)

This is precisely the transitive closure algorithm due to
Warshallrl()] ( a shortest-path version of the algorithm s
duc to Floyd[11] and a minor modification of the algorithm,
in its shortest path version, is attibuted to Dantzig[15]),
which was recently implemented in a systolic array by Kung
and Lo[2].

Clearly, for a sequential implementation, the above
algorithm requires &3 logical OR and logical AND operations
which implies a factor of two rcduction in computational
effort. Ncvertheless, the amount of parallel time (from
first input to last output) required for the (¥x¥) systolic
array in [1] and the (¥x&) systolic array in [2] is the same
and cqual to sv. This is bccause Warshall's algorithm
requires forward and backward processing of the data (both
increasing and decreasing iy indiccs? whereas in the general
case, in Algorithm 2, the data is always propagated in the
forward (increasing i, indices) direction. Thus, in order to
implement Warshall's algorithm on a systolic array, the
authors in [2] had to introduce a fced-back loop which
renders the iteration interval, i.c., the time between succes-
sive data sam; les, to be 3, whercas the iteration interval for
the array in (1] is 1. Thus, the total time taken is the same
in both cases, even thouch the systolic array in [1} requires
thrce passes for computing the transitive closure, whereas
the array in (2] requires only onc pass.

Implemcntation of the Repular Iterative Algorithm

Following the procedure given in [3.17], let us define a
number of ‘parallel iteration steps’ for the alponithm in the
following fashion: at itcration step ¢, vaniables a(iy.k),
by k) and cgk) will be computed if 1+j+~k <. The
CXPIession G+ +4) 15 the so-called linear scheduling function
for these vanables [3], since it maps cach vanable at any
index point into a unigue iteration step. Furthermore, the
computation of the vanables at iteration step ¢ requires, as
input, the values of vanables that are computed at iteration
step -1, since e.g., aliy.4) is dependent upon a(e.j - 1,4) and
so on. Thercfore, if we can schedule the computation of the




algorithm such that all variables at step r-1 are computed
before we proceed to step 1, then all precedence constraints
will be satisfied.

Having obtained the linear scheduling functions for the
algorithm, we can now proceed to systematically implement
Algorithm 2 on a mesh-connected processor array using the
techniques described in [4,17]. To do so, note that the
index-space for Algorithm 2, i.e. the span of the indices
{i.j .k} for the variables in the algorithm, can be described by
the set of constraints

1sisN
[ max(i N}=N+1] s j s [ min(N,i}+N ]

1s ks [min(iy,N)] (22)

where the variation of Algorithm 2, suggested by Theorem
S is assumed. Thus, a strcamlined version of Algorithm 2
has the index space shown in Fig.3. Any point with integer
coordinates (i.j,k), that lies within this space, is referred to
as an index point. The index goim (i,j.,k) conceptually
represents the computation described by the iteration unit
of the algorithm. Thus, at this index point, the variables
a(i.j.k), b(ij.k) and c(ij,k) are made available to the algo-
rithm and after some time, the variables a(ij+ 1.k}, b(i+1,k)
and c(ij.k+1) are computed and scat to the appropriate
index points.
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Fig.3: The index space for a variation of Algorithm 2: The
three dimensional solid shown above is specificd by the set
f constraints in eqn.(22).

Just as an example, let us now assume that all variables
with the same k-index are executed by the same processor.
In terms used in [3,4], the iteration-space is [001]. This
defines a two-dimensional processor array (shown in Fig.4)
with approximately 3N° processors. In this array, the a and
b values are propagated to the neighbouring processors
while ¢(ij.k) represents a register value that is updated
within processor at location (i ).

In the array shown in Fig.4, the processor at location
(iyj) computes all variables with index (i,.k) at ‘time’
(i+,+k). Using this fact and by cxamining the set of con-
straints that determine the index-space, one can argue that
the processors at locations (iy), (i+Ny) fori s j s N, (1.5+N)
for ; s s N, and at location (i+N,;+N) are active during
disjoint intcrvals of time. The operations of all these proces-
sors can therefore be simulated on a single one; the result-

'in array, shown in Fig.5, is preciscly the array derived in
1].
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